Saving Science

This is a nice explanation of the difficulty in answering complex questions.

In his 1972 article “Science and Trans-Science,” Weinberg observed that society would increasingly be calling upon science to understand and address the complex problems of modernity — many of which, of course, could be traced back to science and technology. But he accompanied this recognition with a much deeper and more powerful insight: that such problems “hang on the answers to questions that can be asked of science and yet which cannot be answered by science.” He called research into such questions “trans-science.” If traditional sciences aim for precise and reliable knowledge about natural phenomena, trans-science pursues realities that are contingent or in flux. The objects and phenomena studied by trans-science — populations, economies, engineered systems — depend on many different things, including the particular conditions under which they are studied at a given time and place, and the choices that researchers make about how to define and study them. This means that the objects and phenomena studied by trans-science are never absolute but instead are variable, imprecise, uncertain — and thus always potentially subject to interpretation and debate.

I could quote the next few paragraphs, but I add just another one.

But many other branches of science study things that cannot be unambiguously characterized and that may not behave predictably even under controlled conditions — things like a cell or a brain, or a particular site in the brain, or a tumor, or a psychological condition. Or a species of bird. Or a toxic waste dump. Or a classroom. Or “the economy.” Or the earth’s climate. Such things may differ from one day to the next, from one place or one person to another. Their behavior cannot be described and predicted by the sorts of general laws that physicists and chemists call upon, since their characteristics are not invariable but rather depend on the context in which they are studied and the way they are defined. Of course scientists work hard to come up with useful ways to characterize the things they study, like using the notion of a species to classify biologically distinct entities, or GDP to define the scale of a nation’s economy, or IQ to measure a person’s intelligence, or biodiversity to assess the health of an ecosystem, or global average atmospheric temperature to assess climate change. Or they use statistics to characterize the behavior of a heterogeneous class of things, for example the rate of accidents of drivers of a certain age, or the incidence of a certain kind of cancer in people with a certain occupation, or the likelihood of a certain type of tumor to metastasize in a mouse or a person. But these ways of naming and describing objects and phenomena always come with a cost — the cost of being at best only an approximation of the complex reality. Thus scientists can breed a strain of mouse that tends to display loss of cognitive function with aging, and the similarities between different mice of that strain may approximate the kind of homogeneity possessed by the objects studied by physics and chemistry. This makes the mouse a useful subject for research. But we must bear the cost of that usefulness: the connection between the phenomena studied in that mouse strain and the more complex phenomena of human diseases, such as Alzheimer’s, is tenuous — or even, as Susan Fitzpatrick worries, nonexistent.

via The New Atlantis

Leave a comment

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s